Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617536

RESUMO

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Assuntos
Neoplasias Colorretais , Mutações Sintéticas Letais , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Fosforilação , Citoplasma , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , PTEN Fosfo-Hidrolase/genética
2.
Theranostics ; 11(19): 9415-9430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646378

RESUMO

The feasibility of personalized medicine for cancer treatment is largely hampered by costly, labor-intensive and time-consuming models for drug discovery. Herein, establishing new pre-clinical models to tackle these issues for personalized medicine is urgently demanded. Methods: We established a three-dimensional tumor slice culture (3D-TSC) platform incorporating label-free techniques for time-course experiments to predict anti-cancer drug efficacy and validated the 3D-TSC model by multiphoton fluorescence microscopy, RNA sequence analysis, histochemical and histological analysis. Results: Using time-lapse imaging of the apoptotic reporter sensor C3 (C3), we performed cell-based high-throughput drug screening and shortlisted high-efficacy drugs to screen murine and human 3D-TSCs, which validate effective candidates within 7 days of surgery. Histological and RNA sequence analyses demonstrated that 3D-TSCs accurately preserved immune components of the original tumor, which enables the successful achievement of immune checkpoint blockade assays with antibodies against PD-1 and/or PD-L1. Label-free multiphoton fluorescence imaging revealed that 3D-TSCs exhibit lipofuscin autofluorescence features in the time-course monitoring of drug response and efficacy. Conclusion: This technology accelerates precision anti-cancer therapy by providing a cheap, fast, and easy platform for anti-cancer drug discovery.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , China , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Camundongos , Neoplasias/terapia , Imagem Óptica/métodos , Imagem com Lapso de Tempo/métodos , Microambiente Tumoral/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 7(45): 24983-6, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26529382

RESUMO

A blended bimolecular exciplex formation was demonstrated between two individual donor and acceptor molecules, which are tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine (Tm3PyBPZ). The photoluminescence spectrum of the exciplex in the solid state showed an emission with a peak around 514 nm (∼2.49 eV). By applying this exciplex as an emitting layer, a highly efficient all-fluorescent organic lighting emitting diode with maximum efficiencies of 13.1% and 53.4 lm/W can be realized under an extremely low turn-on voltage of only 2.4 V. The thermally activated delayed fluorescence (TADF) process is believed to be responsible for the excellent device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...